Home » Analytics » JMP and R – #rstats

JMP and R – #rstats

Software

R in the Cloud

Train in R

An amazing example of R being used sucessfully in combination (and not is isolation) with other enterprise software is the add-ins functionality of JMP and it’s R integration.

See the following JMP add-ins which use R

http://support.sas.com/demosdownloads/downarea_t4.jsp?productID=110454&jmpflag=Y

JMP Add-in: Multidimensional Scaling using R

This add-in creates a new menu command under the Add-Ins Menu in the submenu R Add-ins. The script will launch a custom dialog (or prompt for a JMP data table is one is not already open) where you can cast columns into roles for performing MDS on the data table. The analysis results in a data table of MDS dimensions and associated output graphics. MDS is a dimension reduction method that produces coordinates in Euclidean space (usually 2D, 3D) that best represent the structure of a full distance/dissimilarity matrix. MDS requires that input be a symmetric dissimilarity matrix. Input to this application can be data that is already in the form of a symmetric dissimilarity matrix or the dissimilarity matrix can be computed based on the input data (where dissimilarity measures are calculated between rows of the input data table in R).

Submitted by: Kelci Miclaus SAS employee Initiative: All
Application: Add-Ins Analysis: Exploratory Data Analysis

Chernoff Faces Add-in

One way to plot multivariate data is to use Chernoff faces. For each observation in your data table, a face is drawn such that each variable in your data set is represented by a feature in the face. This add-in uses JMP’s R integration functionality to create Chernoff faces. An R install and the TeachingDemos R package are required to use this add-in.

Submitted by: Clay Barker SAS employee Initiative: All
Application: Add-Ins Analysis: Data Visualization

Support Vector Machine for Classification

By simply opening a data table, specifying X, Y variables, selecting a kernel function, and specifying its parameters on the user-friendly dialog, you can build a classification model using Support Vector Machine. Please note that R package ‘e1071′ should be installed before running this dialog. The package can be found from http://cran.r-project.org/web/packages/e1071/index.html.

Submitted by: Jong-Seok Lee SAS employee Initiative: All
Application: Add-Ins Analysis: Exploratory Data Analysis/Mining

Penalized Regression Add-in

This add-in uses JMP’s R integration functionality to provide access to several penalized regression methods. Methods included are the LASSO (least absolutee shrinkage and selection operator, LARS (least angle regression), Forward Stagewise, and the Elastic Net. An R install and the “lars” and “elasticnet” R packages are required to use this add-in.

Submitted by: Clay Barker SAS employee Initiative: All
Application: Add-Ins Analysis: Regression

MP Addin: Univariate Nonparametric Bootstrapping

This script performs simple univariate, nonparametric bootstrap sampling by using the JMP to R Project integration. A JMP Dialog is built by the script where the variable you wish to perform bootstrapping over can be specified. A statistic to compute for each bootstrap sample is chosen and the data are sent to R using new JSL functionality available in JMP 9. The boot package in R is used to call the boot() function and the boot.ci() function to calculate the sample statistic for each bootstrap sample and the basic bootstrap confidence interval. The results are brought back to JMP and displayed using the JMP Distribution platform.

Submitted by: Kelci Miclaus SAS employee Initiative: All
Application: Add-Ins Analysis: Basic Statistics

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Conferences

Predictive Analytics- The Book

Books

Follow

Get every new post delivered to your Inbox.

Join 843 other followers